

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Massively Parallel Message Passing:

Time to Start from Scratch?

Anthony Skjellum, PhD

University of Alabama at Birmingham
Department of Computer and Information Sciences

College of Arts and Sciences
Birmingham, AL, USA

tony@cis.uab.edu

Abstract

Yes: New requirements have invalidated the use of MPI and
other similar library-type message passing systems at full scale on
systems of 100's of millions of cores. Uses on substantial subsets
of these systems should remain viable, subject to limitations.
 No: If the right set of implementation and application deci-
sions are made, and runtime strategies put in place, existing MPI

notations can used within exascale systems at least to a degree.
 Maybe: Implications of instantiating “MPI worlds” as islands
inside exascale systems cannot damage overall scalability too
much, or they will inhibit exascalability, and thus fail.

Categories and Subject Descriptors F.1.2. [Theory of Compu-

tation]: Modes of Computation - Parallelism and concurrency.

General Terms Performance, Design, Reliability, Experimenta-
tion, Standardization, Languages.

Keywords message passing, exascale; MPI; CSP; MPI/RT; ex-
plicit parallel programming; disruptive innovation; scalability

1. Introduction

The key parallel programming model of the 1980's—
communicating sequential processes [1], as implemented by inde-
pendent processes connected with runtime libraries providing
message passing (send-receive, global operations, or both), has
been successfully implemented (e.g., vendor message passing
libraries for disparate systems, P4 [2], PARMACS [3], PVM [4],
Intel NX [5], Zipcode [6], MPL [7], etc), standardized (cf, MPI
Forum [8], MPI-1 [9]), extended (cf, MPI-2 [10], MPI/RT [11]),
and put into broad use, supporting enhanced performance port-
ability. Extremely high performance systems have been designed
over the past fifteen years, including systems designed to acceler-
ate MPI-1 primitives (e.g., Portals [12], ASCI Red Storm [13],
Cray XT5 [14]). However, we have the programming notation
and abstractions of the early 1980's as the underpinnings of these
systems, plus some early 1990’s put/get semantics, and these

primitive abstractions do not do enough to abstract how operations
are performed compared to what is to be performed. Extensions
to and attempts to standardize with distributed shared memory (cf,
MPI-2 one-sided primitives [10]) have been included, but are
currently somewhat incompatible with PGAS languages and sys-
tems [15], and furthermore MPI isn't easy to mutually convert
with BSP-style notations or semantics either [16]. Connection
with publish-subscribe models [17] used in military / space-based
fault-tolerant message passing systems are absent (see also [18]).

The hypothesis of this paper is that new requirements arising
in exascale computation have at least partly invalidated the use of
the parallel model expressed and implied by MPI and other simi-
lar library-type message passing systems at full scale on systems
of many millions of cores (or other computational entities). Uses
on representative subscales of these systems should remain viable,
subject to limitations of implementations, usages by applications,
and composition (cross-platform integration). Backward com-
patibility can perhaps be better obtained once exascale architec-
ture that achieves performance and scalability is first established.

Nonetheless, the author posits that many efforts will try to
drive the legacy system forward using MPI globally (via a feasible
path of adaptation), as this follows the common evolution of
large-scale systems: adaptability of the system and its runtime
software to keep valuable applications working is the common
history of many if not most applications of any size, enduring
value, and extended lifetime (“legacy”).

Combination of “old” and “new” appears to be the best way to
proceed (balancing technical, practical, adoption risks, and eco-
nomic concerns), allowing for a complete rethink of massively
scalable runtime systems and data motion, and then adding the
layering of suitable portions of MPI or MPI-like semantics (and
syntax) onto enclaves of those systems, implemented in ways that
do not imply global impact on scalability as a result of local im-
plementation decisions, or local utilization of such notations.

Exascale requirements include the following: management of
systems with increasingly higher risk of frequent faults, coping
with the growing complexity of systems: memory hierarchy, net-
work hierarchy, heterogeneous memory types, massively parallel
components with heterogeneity, apparent penalties associated
with skew of clocks, operations, and activities across an ensemble,
and a sliding scale of memory size to computational entity (core,
thread, warp) granularity. Because of these requirements, certain
data structures that could be enumerated previously will not be
able to be enumerated/stored in future systems at full scale; global
state, in short, becomes highly problematic.

2. Reviewing the Current Programming Model

The following aspects underpin explicit parallel programming
based on message passing today:

• The systems are “fault free”: faults are hidden from the
CSP system, so applications have no fault models [9].

• The systems behave deterministically within bounds,
including bounds on communication delays [1,9].

• The systems are compositions of sequential programs
implemented as traditional Unix processes or POSIX
threads (or similar) plus library- based primitives [1,9].

• Each process has sufficient store to hold the complete
local state and partial global state of the message pass-
ing system, including enumerated lists representing
connections, ranks, communicating partners, buffers,
and in-progress data motion. Storage complexity is lin-
ear in the number of addressable entities, with superlin-
ear storage complexity plausible in some situations.

• Scheduling, resources, and programs often will not ex-
hibit single-peaked execution times; there is often con-
siderable jitter, and cascade failures in a performance
sense are possible because of a lack of predictability of
execution time at massive scale.

• Progress of transfers may or may not be well separated
from the execution of user threads, depending on im-
plementation, and even within an implementation de-
pending on fabrics traversed; this closely relates to non-
blocking and asynchronous operations and their comple-
tion semantics.

• Middleware does not necessarily strive minimize time
to completion of programs, but rather zero-message la-
tency and asymptotic bandwidth of ping-pong bench-
marks, or they may attempt to make trades between
overhead and latency.

• It is generally accepted that hundreds of CPU instruc-
tions must be executed as part of transfer “sends” and
“receives”.

• Overlapping of communication, computation, and I/O is
not strongly supported or emphasized in real application
uses of the systems.

• Because of the goal for zero-copy semantics for large
transfers, and even zero-sided communication (i.e.,
MPI/RT [11]), as well as to avoid internal buffering as-
sumptions, data motion is not transactional, usually not
reversible, and programs are in dire straits if a fault oc-
curs; once written, user buffers cannot be unwritten.

• APIs and semantics of the system have costs, even when
those subsystems are not engaged, or program semantics
are simpler than the general case (e.g., use of MPI tags
in communication of SPMD programs with static re-
source utilization and no wildcard receives).

• Planned transfer for temporal locality (static or persis-
tent communication) is mostly deemphasized, even
though it is a source of considerable opportunity for

runtime optimizations at scale. MPI-3 appears prepared
to address these concerns at least partially [19,26].

• Library implementations are mandated, if not by users,
then by tool concerns, and also by the standards [9,10].

• Subsets (profiles) have no benefits for performance or
scaling, whether because the standards fail to recognize
subsets, or because subsets across classes of

functionality and subclasses of operations do not lead to
the same quantitative benefits on different platforms.

• Compilers don't do anything to help at scale.
• It is commonly recognized that few if any parties have

sufficient funding to build complex new runtime
systems and middleware and/or domain-specific
languages [21] to offer a competent alternative.

3. Facts of Exascale Life

MPI library implementations and specifications (middleware) will
likely impede exascale systems performance, though providing
continued nominal portability. Whether because of faults, jitter,
memory to compute-entity granularity mismatch, or for several of
these factors, MPI libraries will imply heavier and heavier relative
overheads compared to that which resulted in existing and earlier
systems architectures. Such middleware will therefore need to be
“disrupted” [20] by newer explicit parallel programming models
that at first are perhaps lower in performance, portability, and/or
productivity, but which will have the ability over time to overtake
legacy MPI systems at exascale, thereby replacing them as a
dominant way of programming parallel systems.

Legacy systems will continue to use MPI, whether as a library,
or as a notation implemented by a domain-specific language
(DSL) [21] that provides enough MPI-type capability to move
MPI applications to exascale enclaves (fractional sizes). Between
enclaves, significant changes to applications will be needed top-
to-bottom. And inter-enclave communication and interactions
cannot be fundamentally impaired by the intra-enclave communi-
cations. Several level hierarchical systems may also appear.

For applications that truly require (and deserve) exascale sys-
tems, the reality that runtime and message passing system changes
are mandated is analogous to the fact that for maximum scalabil-
ity, convergence must be sacrificed (e.g., Gauss-Seidel vs. Gauss-
Jacobi iteration, or ILU vs. Jacobi preconditioning, or between
nonlinear and linear levels of a nonlinear system solver). Many
researchers have pointed out such tradeoffs and they are com-
monly incorporated into sequential and parallel solvers. Analo-
gous tradeoffs between the so-called fastest sequential algorithm
and the so-called fastest parallel algorithm have been reported in
some situations, though not in others. While this has sometimes
led to better overall algorithms, for many classes of systems, less
precise and tuned systems with more intermediate internal error
are needed to achieve maximum scalability. So it should come as
no surprise that runtime systems and expressions of parallel com-
putations would also have to be weakened and be less “human
tractable” and “safe” at exascale, given that the underlying algo-
rithms must themselves compromise to achieve scalability, and
allow for more error and uncertainty. (Shannon’s Information
Theory evidently plays a key role in (exa)scalability [25].)

4. Analogy to N-Body Simulations

The scalability of future message passing systems almost defi-
nitely requires that they do even less to damage the overall scal-
ability of systems than have previous middleware layered on,
underlying APIs, protocols, and networks. Since layered systems
cannot generally add to scalability, but only reduce or prove neu-

tral, layered systems such as are commonly implemented today
represent a serious challenge to systems designs of the future.

N-body computations [21] illustrate the need for systems that
might have locally quadratic (all-to-all) state between “near” enti-
ties, yet globally have only linear time complexity, and lumped
(vague) state information. This analog is probably of great value
in composing massively parallel exascale systems... they will also
have to be always on, slow to start up and slow down, constantly
failing in parts, and always computing, and always adapting.
Furthermore a portion of the system has only a vague concept of
portions of the system far away, unless there is a huge amount of
repetitive traffic, coupling, or interaction, in which case those arcs
of connectivity a) represent closeness, b) represent a justification
for on-going accretion of additional shared state information.

5. Legacy Drives Research and Standardization

Conserving existing C/C++/Fortran plus MPI applications re-
stricts and drives almost all the efforts of the current MPI Forum
[8], with regard to explicit parallel programming. There may be
no “normal science” [24] path to its exascale successor, but that as
evidence grows for the existing systems having limitations, a fresh
look at how to compose the applications, runtime systems, data
motion, algorithms, applications, and scheduling must be done to
achieve exascalability. Classes of the most demanding systems
will not initially be easily susceptible to the parts of the perform-
ance-portability-productivity space where MPI has up to now
proven quite useful. Emergence of disruptive parallelism such as
GPUs [22], which are “hostile” to the MPI model, may help to
drive the transition from conserving CSP at all scales.

6. Conclusions

Full exascale systems can't be programmed with an expectation of
feasibility/scalability with MPI-type middleware. Far greater
control of resources (static and dynamic) is needed. Starting from
requirements and reintroducing MPI enclaves as object-
oriented/aspect-oriented instantiations within limited subsystems
appears plausible. Long-range, repetitive, and highest demand
transfers, including transfers between subsystems that do not mu-
tually synchronize, will have to be non-blocking, reversible,
and/or (split-phase) transactional. Failure and retry will have to be
part of these operations, and at least some failures will have to be
exposed to applications. Computational sessions will have to build
up, rather than build down. Exascalability means accepting higher
latency, and so requires more latency hiding. Performance deci-
sions made near the source of messages that require global state
will not be possible for maximum scalability (e.g., source rout-
ing). Scalability and availability decisions (made near destina-
tions) will require the delivery of messages to have hierarchical
demultiplexing, and potentially oversubscribed resources and
reactive program semantics in order to achieve scalability. Mes-
sages themselves may need internal concurrent semantics so that
they can be decomposed and recomposed in flight for variable
granularity and flexible remote processing. Greater asynchrony
will be needed. Single research groups will not be able to imple-
ment the runtime systems and libraries; systems will have to in-
teroperate. Greater emphasis on predictability and low jitter in
scheduling will be needed at full scale to avoid loss of significant
performance. Global state must be minimal. Fault models may
well have to be managed as aspects to improve portability.

References

[1] Hoare, C.A.R., ed., Developments in Concurrency and Computation,
Addison-Wesley, 1990.

[2] Butler, R. M and Lusk, E. L, Monitors, Messages, and Clusters: the

p4 Parallel Programming System, URL: http: //www.mcs
.anl.gov/~lusk/oldpapers/p4/paper.html., Accessed: 3/31/2010.

[3] R. Calkin et al, Portable programming with the PARMACS message-

passing library, Par. Comp, 20(4), pp. 615-632, 1994.

[4] Geist, et al, PVM: Parallel Virtual Machine, MIT Press, 1994.

[5] Pierce, P. The NX Message Passing Interface, Par. Comp, 20(4), pp.

463-480, 1994.

[6] Skjellum et al, The Design and Evolution of Zipcode, Par. Comp,
20(4), pp. 565--596, 1994.

[7] International Business Machines Corporation, MPL-to-MPI
Conversion Reference, URL:
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topi
c=/com.ibm.cluster.pe.do/ /pe_422/am10400430.html, Accessed:
3/31/2010.

[8] MPI Forum, URL: http://mpi-forum.org. Accessed: 3/31/2010.

[9] MPI Forum, URL: http://mpi-forum.org/docs/mpi-10.ps. Accessed:
3/31/2010.

[10] MPI Forum, MPI 2.2 Standard, URL: http://mpi-
forum.org/docs/mpi-2.2/mpi22-report.pdf. Accessed: 3/31/2010.

[11] Skjellum, A., Kanevsky, A, et al. The Real-Time Message Passing

Interface Standard (MPI/RT-1.1) CCP&E 16(S1): 0-322, 2004.

[12] Brightwell, R, The Portals 3.0 Message Passing System, URL:
www.cs.sandia.gov/pub/papers/bright/portals3v1-
1.ps.gzwww.cs.sandia.gov/pub/papers/bright/portals3v1-1.ps.gz.
Accessed: 3/31/2010.

[13] Sandia National Laboratories, Red Storm Home Page,
http://www.sandia.gov/ASC/redstorm.html. Accessed: 3/31/2010.

[14] Cray, Inc: http://www.cray.com/Products/XT/Systems/XT5.aspx.
Downloaded 3/31/2010.

[15] Chamberlain, B. L, and Callahan D., and Zima Hans P., Parallel
Programmability and the Chapel Language, DARPA HPCS,

www.highproductivity.org/HPPLM/final-chamberlain.pdf. Accessed:
3/31/2010.

[16] Bisseling, R., Parallel Scientific Computing: A Structured Approach

using BSP and MPI, Oxford University Press, USA, 2004.

[17] Eisenhauer, G., Schwan, K, Bustamante, F, Publish-Subscribe for

High-Performance Computing, IEEE Internet Computing, vol. 10,
no. 1, pp. 40-47, Jan./Feb. 2006, doi:10.1109/MIC.2006.16.

[18] Batchu, R, Skjellum, A, et al, MPI/FTTM: Architecture and Tax-

onomies for Fault-Tolerant, Message-Passing Middleware for Per-
formance-Portable Parallel Computing, pp.26, CCGrid'01, 2001.

[19] MPI Forum, Preview of the MPI-3 Standard. www.open-
mpi.org/papers/sc-2009/MPI_Forum_SC09_BOF-2up.pdf. Accessed
3/31/2010.

[20] Christensen, C. M., The Innovator's Dilemma, HarperCollins, 2003.

[21] van Deursen, A., Klint, P., and Visser, J. 2000. Domain-specific
languages: an annotated bibliography. SIGPLAN Not. 35, 6 (Jun.
2000), 26-36. DOI= http://doi.acm.org/10.1145/352029.352035.

[22] Lars S. Nyland and Jan F. Prins and John H. Reif, A Data-Parallel
Implementation of the Adaptive Fast Multipole Algorithm, Proc. of
the 1993 DAGS/PC Symposium, June 1993, Dartmouth College.

[23] GPGPU.org: http://gpgpu.org/. Accessed 3/31/2010.

[24] Kuhn, Thomas, Structure of Scientific Revolutions, 3/e, University of

Chicago Press, 1996.

[25] Shannon, C.E., A Math. Theory of Comm., Bell System Technical
Journal, 27, pp. 379–423 & 623–656, July & October, 1948.

[26] T. Hoefler, P. Gottschling and A. Lumsdaine, Leveraging Non-
blocking Collective Communication in High-performance Applica-

tions, In Proc. of the 20th Annual Symposium on Par. in Alg. & Arch.,
SPAA'08, Munich, Germany, pp. 113-115, ACM, Jun. 2008.

