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Abstract  

Yes:  New requirements have invalidated the use of MPI and 
other similar library-type message passing systems at full scale on 
systems of 100's of millions of cores.   Uses on substantial subsets 
of these systems should remain viable, subject to limitations.   
     No:  If the right set of implementation and application deci-
sions are made, and runtime strategies put in place, existing MPI 

notations can used within exascale systems at least to a degree. 
     Maybe:  Implications of instantiating “MPI worlds” as islands 
inside exascale systems cannot damage overall scalability too 
much, or they will inhibit exascalability, and thus fail. 

Categories and Subject Descriptors  F.1.2. [Theory of Compu-

tation]: Modes of Computation - Parallelism and concurrency.  

General Terms  Performance, Design, Reliability, Experimenta-
tion, Standardization, Languages. 

Keywords  message passing, exascale; MPI; CSP; MPI/RT; ex-
plicit parallel programming; disruptive innovation; scalability 

1. Introduction 

The key parallel programming model of the 1980's—
communicating sequential processes [1], as implemented by inde-
pendent processes connected with runtime libraries providing 
message passing (send-receive, global operations, or both), has 
been successfully implemented (e.g., vendor message passing 
libraries for disparate systems, P4 [2], PARMACS [3], PVM [4], 
Intel NX [5], Zipcode [6], MPL [7], etc), standardized (cf, MPI 
Forum [8], MPI-1 [9]), extended (cf, MPI-2 [10], MPI/RT [11]), 
and put into broad use, supporting enhanced performance port-
ability.  Extremely high performance systems have been designed 
over the past fifteen years, including systems designed to acceler-
ate MPI-1 primitives (e.g., Portals [12], ASCI Red Storm [13], 
Cray XT5 [14]).   However, we have the programming notation 
and abstractions of the early 1980's as the underpinnings of these 
systems, plus some early 1990’s put/get semantics, and these 

primitive abstractions do not do enough to abstract how operations 
are performed compared to what is to be performed.   Extensions 
to and attempts to standardize with distributed shared memory (cf, 
MPI-2 one-sided primitives [10]) have been included, but are 
currently somewhat incompatible with PGAS languages and sys-
tems [15], and furthermore MPI isn't easy to mutually convert 
with BSP-style notations or semantics either [16].   Connection 
with publish-subscribe models [17] used in military / space-based 
fault-tolerant message passing systems are absent (see also [18]). 

The hypothesis of this paper is that new requirements arising 
in exascale computation have at least partly invalidated the use of 
the parallel model expressed and implied by MPI and other simi-
lar library-type message passing systems at full scale on systems 
of many millions of cores (or other computational entities).   Uses 
on representative subscales of these systems should remain viable, 
subject to limitations of implementations, usages by applications, 
and composition (cross-platform integration).  Backward com-
patibility can perhaps be better obtained once exascale architec-
ture that achieves performance and scalability is first established. 

Nonetheless, the author posits that many efforts will try to 
drive the legacy system forward using MPI globally (via a feasible 
path of adaptation), as this follows the common evolution of 
large-scale systems: adaptability of the system and its runtime 
software to keep valuable applications working is the common 
history of many if not most applications of any size, enduring 
value, and extended lifetime (“legacy”). 

Combination of “old” and “new” appears to be the best way to 
proceed (balancing technical, practical, adoption risks, and eco-
nomic concerns), allowing for a complete rethink of massively 
scalable runtime systems and data motion, and then adding the 
layering of suitable portions of MPI or MPI-like semantics (and 
syntax) onto enclaves of those systems, implemented in ways that 
do not imply global impact on scalability as a result of local im-
plementation decisions, or local utilization of such notations. 

Exascale requirements include the following: management of 
systems with increasingly higher risk of frequent faults, coping 
with the growing complexity of systems: memory hierarchy, net-
work hierarchy, heterogeneous memory types, massively parallel 
components with heterogeneity, apparent penalties associated 
with skew of clocks, operations, and activities across an ensemble, 
and a sliding scale of memory size to computational entity (core, 
thread, warp) granularity.  Because of these requirements, certain 
data structures that could be enumerated previously will not be 
able to be enumerated/stored in future systems at full scale; global 
state, in short, becomes highly problematic. 



2. Reviewing the Current Programming Model 

The following aspects underpin explicit parallel programming 
based on message passing today: 

• The systems are “fault free”: faults are hidden from the 
CSP system, so applications have no fault models [9]. 

• The systems behave deterministically within bounds, 
including bounds on communication delays [1,9]. 

• The systems are compositions of sequential programs 
implemented as traditional Unix processes or POSIX 
threads (or similar) plus library- based primitives [1,9]. 

• Each process has sufficient store to hold the complete 
local state and partial global state of the message pass-
ing system, including enumerated lists representing 
connections, ranks, communicating partners, buffers, 
and in-progress data motion.  Storage complexity is lin-
ear in the number of addressable entities, with superlin-
ear storage complexity plausible in some situations. 

• Scheduling, resources, and programs often will not ex-
hibit single-peaked execution times; there is often con-
siderable jitter, and cascade failures in a performance 
sense are possible because of a lack of predictability of 
execution time at massive scale. 

• Progress of transfers may or may not be well separated 
from the execution of user threads, depending on im-
plementation, and even within an implementation de-
pending on fabrics traversed; this closely relates to non-
blocking and asynchronous operations and their comple-
tion semantics. 

• Middleware does not necessarily strive minimize time 
to completion of programs, but rather zero-message la-
tency and asymptotic bandwidth of ping-pong bench-
marks, or they may attempt to make trades between 
overhead and latency.    

• It is generally accepted that hundreds of CPU instruc-
tions must be executed as part of transfer “sends” and 
“receives”. 

• Overlapping of communication, computation, and I/O is 
not strongly supported or emphasized in real application 
uses of the systems. 

• Because of the goal for zero-copy semantics for large 
transfers, and even zero-sided communication (i.e., 
MPI/RT [11]), as well as to avoid internal buffering as-
sumptions, data motion is not transactional, usually not 
reversible, and programs are in dire straits if a fault oc-
curs; once written, user buffers cannot be unwritten. 

• APIs and semantics of the system have costs, even when 
those subsystems are not engaged, or program semantics 
are simpler than the general case (e.g., use of MPI tags 
in communication of SPMD programs with static re-
source utilization and no wildcard receives). 

• Planned transfer for temporal locality (static or persis-
tent communication) is mostly deemphasized, even 
though it is a source of considerable opportunity for 

runtime optimizations at scale.  MPI-3 appears prepared 
to address these concerns at least partially [19,26]. 

• Library implementations are mandated, if not by users, 
then by tool concerns, and also by the standards [9,10]. 

• Subsets (profiles) have no benefits for performance or 
scaling, whether because the standards fail to recognize 
subsets, or because subsets across classes of 

functionality and subclasses of operations do not lead to 
the same quantitative benefits on different platforms.   

• Compilers don't do anything to help at scale.   
• It is commonly recognized that few if any parties have 

sufficient funding to build complex new runtime 
systems and middleware and/or domain-specific 
languages [21] to offer a competent alternative. 

3. Facts of Exascale Life 

MPI library implementations and specifications (middleware) will 
likely impede exascale systems performance, though providing 
continued nominal portability. Whether because of faults, jitter, 
memory to compute-entity granularity mismatch, or for several of 
these factors, MPI libraries will imply heavier and heavier relative 
overheads compared to that which resulted in existing and earlier 
systems architectures.  Such middleware will therefore need to be 
“disrupted” [20] by newer explicit parallel programming models 
that at first are perhaps lower in performance, portability, and/or 
productivity, but which will have the ability over time to overtake 
legacy MPI systems at exascale, thereby replacing them as a 
dominant way of programming parallel systems.   

Legacy systems will continue to use MPI, whether as a library, 
or as a notation implemented by a domain-specific language 
(DSL) [21] that provides enough MPI-type capability to move 
MPI applications to exascale enclaves (fractional sizes).  Between 
enclaves, significant changes to applications will be needed top-
to-bottom.  And inter-enclave communication and interactions 
cannot be fundamentally impaired by the intra-enclave communi-
cations.  Several level hierarchical systems may also appear. 

For applications that truly require (and deserve) exascale sys-
tems, the reality that runtime and message passing system changes 
are mandated is analogous to the fact that for maximum scalabil-
ity, convergence must be sacrificed (e.g., Gauss-Seidel vs. Gauss-
Jacobi iteration, or ILU vs. Jacobi preconditioning, or between 
nonlinear and linear levels of a nonlinear system solver).   Many 
researchers have pointed out such tradeoffs and they are com-
monly incorporated into sequential and parallel solvers.  Analo-
gous tradeoffs between the so-called fastest sequential algorithm 
and the so-called fastest parallel algorithm have been reported in 
some situations, though not in others.  While this has sometimes 
led to better overall algorithms, for many classes of systems, less 
precise and tuned systems with more intermediate internal error 
are needed to achieve maximum scalability.  So it should come as 
no surprise that runtime systems and expressions of parallel com-
putations would also have to be weakened and be less “human 
tractable” and “safe” at exascale, given that the underlying algo-
rithms must themselves compromise to achieve scalability, and 
allow for more error and uncertainty. (Shannon’s Information 
Theory evidently plays a key role in (exa)scalability [25].) 

4. Analogy to N-Body Simulations 

The scalability of future message passing systems almost defi-
nitely requires that they do even less to damage the overall scal-
ability of systems than have previous middleware layered on, 
underlying APIs, protocols, and networks.  Since layered systems 
cannot generally add to scalability, but only reduce or prove neu-



tral, layered systems such as are commonly implemented today 
represent a serious challenge to systems designs of the future. 

N-body computations [21] illustrate the need for systems that 
might have locally quadratic (all-to-all) state between “near” enti-
ties, yet globally have only linear time complexity, and lumped 
(vague) state information.  This analog is probably of great value 
in composing massively parallel exascale systems... they will also 
have to be always on, slow to start up and slow down, constantly 
failing in parts, and always computing, and always adapting.  
Furthermore a portion of the system has only a vague concept of 
portions of the system far away, unless there is a huge amount of 
repetitive traffic, coupling, or interaction, in which case those arcs 
of connectivity a) represent closeness, b) represent a justification 
for on-going accretion of additional shared state information. 

5. Legacy Drives Research and Standardization  

Conserving existing C/C++/Fortran plus MPI applications re-
stricts and drives almost all the efforts of the current MPI Forum 
[8], with regard to explicit parallel programming.  There may be 
no “normal science” [24] path to its exascale successor, but that as 
evidence grows for the existing systems having limitations, a fresh 
look at how to compose the applications, runtime systems, data 
motion, algorithms, applications, and scheduling must be done to 
achieve exascalability.  Classes of the most demanding systems 
will not initially be easily susceptible to the parts of the perform-
ance-portability-productivity space where MPI has up to now 
proven quite useful.  Emergence of disruptive parallelism such as 
GPUs [22], which are “hostile” to the MPI model, may help to 
drive the transition from conserving CSP at all scales.  

6. Conclusions 

Full exascale systems can't be programmed with an expectation of 
feasibility/scalability with MPI-type middleware.  Far greater 
control of resources (static and dynamic) is needed.  Starting from 
requirements and reintroducing MPI enclaves as object-
oriented/aspect-oriented instantiations within limited subsystems 
appears plausible.  Long-range, repetitive, and highest demand 
transfers, including transfers between subsystems that do not mu-
tually synchronize, will have to be non-blocking, reversible, 
and/or (split-phase) transactional. Failure and retry will have to be 
part of these operations, and at least some failures will have to be 
exposed to applications. Computational sessions will have to build 
up, rather than build down. Exascalability means accepting higher 
latency, and so requires more latency hiding.  Performance deci-
sions made near the source of messages that require global state 
will not be possible for maximum scalability (e.g., source rout-
ing).  Scalability and availability decisions (made near destina-
tions) will require the delivery of messages to have hierarchical 
demultiplexing, and potentially oversubscribed resources and 
reactive program semantics in order to achieve scalability.  Mes-
sages themselves may need internal concurrent semantics so that 
they can be decomposed and recomposed in flight for variable 
granularity and flexible remote processing.  Greater asynchrony 
will be needed.  Single research groups will not be able to imple-
ment the runtime systems and libraries; systems will have to in-
teroperate. Greater emphasis on predictability and low jitter in 
scheduling will be needed at full scale to avoid loss of significant 
performance. Global state must be minimal.  Fault models may 
well have to be managed as aspects to improve portability. 
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